Otaniemessä kehitetty uusi supermusta materiaali puusta

Blogi - Julkaistu 11.12.2023

Tieteen ja teknologian alati kehittyvässä maailmassa on tiettyjä ilmiöitä, jotka kiehtovat jatkuvasti niin tieteentekijöitä, taiteilijoita kuin suurta yleisöäkin. Yksi tällainen ilmiö on supermustat materiaalit. Supermustat materiaalit ovat aineita, jotka imevät lähes täydellisesti kaiken niihin osuvan valon. Ne ovat niin mustia, etteivät ne heijasta edes infrapuna- tai ultraviolettisäteilyä. Supermustien materiaalien kehittäminen on tärkeää monille tieteenaloille, kuten tähtitieteelle, materiaalitutkimukselle ja kuvantamiselle.

Supermustat ominaisuudet ovat kehittyneet luonnossa moniin eri tarkoituksiin esimerkiksi helpottamaan eläinten maastoon sulautumista, lämmönsäätelyä ja sosiaalista vuorovaikutusta. Ne syntyvät valoa imevien kemiallisten yhdisteiden ja valoa vangitsevien rakenteiden täydellisistä yhdistelmistä. Tutkijat ovat onnistuneet luomaan tällaisia supermustia rakenteita, joilla on ainutlaatuinen kyky imeä valoa, minkä ansiosta ne ovat korvaamattomia eri sovelluksissa. Niiden avulla voidaan muun muassa parantaa aurinkopaneelien suorituskykyä tai vähentää kohinasignaalia avaruustutkimuksessa käytettävissä teleskoopeissa. Mutta kuten kaikissa tieteellisissä hankkeissa, niissäkin on omat rajoitteensa.

Ennätyksellisen supermusta puu

Nykyiset supermustat materiaalit ovat rakenteita, jotka muodostuvat pienistä perusosista. Niiden tuotantoprosessia kutsutaan bottom-up-synteesiksi. Tällaiset menetelmät ovat yleensä aikaa vieviä, energiaintensiivisiä ja riippuvaisia synteettisistä lähtöaineista. Vaikka edistystä on tapahtunut, useimmat supermustat materiaalit ovat edelleen herkkiä kosketukselle, mikä rajoittaa niiden todellisia sovelluksia. Nämä haasteet huomioon ottaen Aalto-yliopiston ja VTT:n tutkijat ryhtyivät suunnittelemaan täysin biopohjaista ”supermustaa” materiaalia puusta. Tutkimusryhmä on hyödyntänyt puun luonnollisia ominaisuuksia tavoitteenaan kehittää vahva, kemiallisesti vaaraton materiaali, joka kykenisi imemään hämmästyttävät 99,65 prosenttia valosta. Onnistuessaan se rikkoisi kaikkien aikojen mustimman massiivipuumateriaalin ennätyksen.

Aalto-Yliopiston erikoistutkija Bruno Mattos selittää, miten puusta saadaan supermusta materiaali: ”Tutkimuksessamme muunnamme puun luonnollisen hiilihydraattien muodostaman rakenteen valoa imeväksi grafiitin kaltaiseksi materiaaliksi. Rakenteellisilla muutoksilla voimme myös kehittää valoa sitovia ominaisuuksia. Supermusta puu syntyy vasta yhdistämällä kemiaa oikeanlaiseen nanorakenteeseen.”

Supermusta tarkoittaa kuitenkin muutakin kuin pelkkää väriä. Se vaatii yhdistelmän valoa imeviä kemiallisia rakenteita ja valoa vangitsevia nanorakenteita. Onnistumisen avain on siis oikeanlaisen kemian sovittaminen puun mikrorakenteeseen, jota luonto on hienosäätänyt vuosituhansien ajan. Uutta rakennetta ei tarvitse suunnitella tyhjästä vaan voidaan hyödyntää olemassa olevaa ja vain sovittaa se haluttuihin mittasuhteisiin.

Puukuitujen luonnollisten muotojen hyödyntäminen

Tutkimus osoitti, että puun selluloosakuitujen luonnollinen epäsymmetrisyys tehostaa ratkaisevasti valon imeytymistä. Monet perinteiset supermustat materiaalit muodostuvat täydellisistä symmetrisessä järjestyksessä olevista lieriön muotoisista rakenteista. Blackwood materiaalin puukuidut ovat luonnostaan erimuotoisia, mikä itsessään lisää valon imeytymistä.

“Puuta on hiiletetty ennenkin ja tuloksena on ollut mustaa materiaalia, mutta ei koskaan supermustaa. Tämä johtuu siitä, että hiiltymislämpötila ja ligniinipitoisuus ovat keskeisiä. Kun säädämme niitä, saamme aikaan uuden rakenteen, joka syntyy suoraan puun soluseinästä, terävämpinä muotoina, jotka ovat mittaluokaltaan mikrometristä nanometriin. Tämä tarkoittaa siis sitä, että valon sironta vähenee, mikä johtaa paljon alhaisempaan kokonaisvalonheijastavuuteen, nyt supermustalla tasolla.”, kertoo tohtoriopiskelija Bin Zhao Aalto-Yliopistosta.

Itse asiassa valon imeytymistä supermustaan puuhun voi verrata valon läpäisevyyteen luonnonmetsässä. Tavallinen metsä on jo paljon pimeämpi kuin esimerkiksi avoin pelto, mutta entä jos metsän puut olisivat kymmenien metrien sijaan useita kilometrejä korkeita? Tässä tapauksessa muotosuhde eli puiden korkeuden ja niiden välisen tilan leveyden suhde olisi paljon suurempi. Metsä olisi siis moninkertaisesti pimeämpi yksinkertaisesti siksi, että valo ei pääse maahan asti.

Uusia sovelluksia

Tämän innovatiivisen lähestymistavan uutuus – helpompi työstettävyys – avaa uusia mahdollisuuksia sovelluksiin, jotka olivat aiemmin mahdottomia toteuttaa. FinnCERES -lippulaivan tutkimusryhmän tekemä tutkimus ei pelkästään venytä supermustien materiaalien rajoja, vaan luo vankan perustan puupohjaisten optisten ratkaisujen kehitykselle. ”Ymmärtämällä puun rakenteen ja kemian sekä sen optisen suorituskyvyn välistä monimutkaista suhdetta saamme arvokasta tietoa kuitupohjaisten materiaalien suunnittelusta erilaisiin sovelluksiin.”, toteaa erikoistutkija Alexey Khakalo VTT:sta.


Kirjoittaja Nina Pulkkis on suomalainen tiedetoimittaja ja dokumenttiohjaaja. Tiedetoimittajana hän on erikoistunut insinööritieteisiin, synteettiseen biologiaan ja kemiaan, erityisesti liittyen biotalouteen ja biomateriaaleihin. Hän on muun muassa ohjannut ja käsikirjoittanut yhteistyössä Howard Jacobsin kanssa kansainvälisesti palkitun tiededokumenttisarjan Suomen tulevaisuus, joka esitettiin MTV3-kanavalla vuosina 2014-2017. Tiedesarjan lisäksi Nina Pulkkis on ohjannut ja käsikirjoittanut kymmeniä yritys- ja historiadokumentteja.
Yhteystiedot: nina.pulkkis(at)synbio.fi, +358 50 4416714, twitter @NPulkkis.


Agenda2030

Blackwood projektissa kehitettävä biopohjainen supermusta materiaali on innovaatio materiaalitieteen ja insinööritieteen alalla. Se tarjoaa kestävän ja myrkyttömän vaihtoehdon perinteisille supermustille materiaaleille, ja sillä voi olla monenlaisia sovelluksia eri teollisuudenaloilla. Näin ollen se linjassa YK:n kestävän kehityksen tavoitteen 9 kanssa.

Lue lisää artikkeleita samasta kestävän kehityksen tavoitteesta:

9. Kestävää teollisuutta, innovaatioita ja infrastruktuureja

Aihetunnisteet: blog, blogi, puu

Lue seuraava artikkeli: Hiilidioksidissa kuplii mahdollisuuksia »